3.14.21 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx\) [1321]

3.14.21.1 Optimal result
3.14.21.2 Mathematica [A] (verified)
3.14.21.3 Rubi [A] (verified)
3.14.21.4 Maple [A] (verified)
3.14.21.5 Fricas [F(-1)]
3.14.21.6 Sympy [F]
3.14.21.7 Maxima [F]
3.14.21.8 Giac [F]
3.14.21.9 Mupad [F(-1)]

3.14.21.1 Optimal result

Integrand size = 43, antiderivative size = 118 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 A \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a b (a+b) d}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}} \]

output
-2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x 
+1/2*c),2^(1/2))/b/d+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*E 
llipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-2*(A*b^2-a*(B*b-C*a))*(cos(1/2*d* 
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+ 
b),2^(1/2))/a/b/(a+b)/d+2*C*sin(d*x+c)/b/d/cos(d*x+c)^(1/2)
 
3.14.21.2 Mathematica [A] (verified)

Time = 4.08 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.78 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\frac {\frac {2 (2 b B-3 a C) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {2 b (A-C) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{a}+\frac {4 C \sin (c+d x)}{\sqrt {\cos (c+d x)}}-\frac {2 C \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (a^2-2 b^2\right ) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{2 b d} \]

input
Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + 
 b*Sec[c + d*x])),x]
 
output
((2*(2*b*B - 3*a*C)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) + ( 
2*b*(A - C)*(2*EllipticF[(c + d*x)/2, 2] - (2*b*EllipticPi[(2*a)/(a + b), 
(c + d*x)/2, 2])/(a + b)))/a + (4*C*Sin[c + d*x])/Sqrt[Cos[c + d*x]] - (2* 
C*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*Elliptic 
F[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a^2 - 2*b^2)*EllipticPi[-(a/b), ArcSi 
n[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/(2*b 
*d)
 
3.14.21.3 Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.99, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.326, Rules used = {3042, 4600, 3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec (c+d x)^2}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {A \cos ^2(c+d x)+B \cos (c+d x)+C}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+b)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+b\right )}dx\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 \int \frac {-a C \cos ^2(c+d x)+b (A-C) \cos (c+d x)+b B-a C}{2 \sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-a C \cos ^2(c+d x)+b (A-C) \cos (c+d x)+b B-a C}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-a C \sin \left (c+d x+\frac {\pi }{2}\right )^2+b (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )+b B-a C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {-\frac {\int -\frac {a (b B-a C)+a A b \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}-C \int \sqrt {\cos (c+d x)}dx}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {a (b B-a C)+a A b \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}-C \int \sqrt {\cos (c+d x)}dx}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a (b B-a C)+a A b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-C \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\int \frac {a (b B-a C)+a A b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {A b \int \frac {1}{\sqrt {\cos (c+d x)}}dx-\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {2 A b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\frac {\frac {2 A b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}}{a}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{b}+\frac {2 C \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\)

input
Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Sec 
[c + d*x])),x]
 
output
((-2*C*EllipticE[(c + d*x)/2, 2])/d + ((2*A*b*EllipticF[(c + d*x)/2, 2])/d 
 - (2*(A*b^2 - a*(b*B - a*C))*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/( 
(a + b)*d))/a)/b + (2*C*Sin[c + d*x])/(b*d*Sqrt[Cos[c + d*x]])
 

3.14.21.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
3.14.21.4 Maple [A] (verified)

Time = 3.13 (sec) , antiderivative size = 382, normalized size of antiderivative = 3.24

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 C \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\right )}{b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}-\frac {2 \left (-A \,b^{2}+B a b -C \,a^{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{b \left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(382\)

input
int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x,me 
thod=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A/a*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2* 
C/b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)- 
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(si 
n(1/2*d*x+1/2*c)^2)^(1/2))-2*(-A*b^2+B*a*b-C*a^2)/b/(a^2-a*b)*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1 
/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.14.21.5 Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\text {Timed out} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2 
),x, algorithm="fricas")
 
output
Timed out
 
3.14.21.6 Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))/cos(d*x+c)**(1 
/2),x)
 
output
Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/((a + b*sec(c + d*x))*sq 
rt(cos(c + d*x))), x)
 
3.14.21.7 Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2 
),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*sq 
rt(cos(d*x + c))), x)
 
3.14.21.8 Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*sq 
rt(cos(d*x + c))), x)
 
3.14.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )} \,d x \]

input
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b/cos 
(c + d*x))),x)
 
output
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b/cos 
(c + d*x))), x)